
Abstract. Density functional calculations using pseudo-
potentials and a plane-wave basis set are applied to
study the geometry and the electronic structure of
conjugated polymers consisting of heterocyclic aromatic
rings. This article focuses on the computational meth-
ods. The in¯uence of the pseudopotentials on the
structural and electronic properties is studied. The rates
of convergence of these properties with respect to the
basis set size and the density of sampling points for the
Brillouin zone integration are considered. The e�ects
of using di�erent exchange±correlation potentials (local
density or generalized gradient approximations) are
examined. It is shown that smooth norm-conserving
pseudopotentials used for calculations on conjugated
polymers lead to converged results with a moderately
sized basis set.
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1 Introduction

Density functional theory is the most widely used
formalism in condensed matter physics to calculate
electronic structures [1, 2]. Although computationally
less demanding than Hartree±Fock calculations, all-
electron density functional calculations on moderately
sized systems can still be very time-consuming. A
technique to reduce the computational e�ort and yet
retain su�cient accuracy to describe the chemical
bonding is to treat only the valence electrons explicity
and to use pseudopotentials to represent the ion cores
[3]. Pseudopotentials, although constructed for isolated
atoms, are transferable to a molecular or solid-state
environment [4]. Smooth pseudopotentials allow an
expansion of the valence molecular orbitals in a plane-
wave basis set of moderate size, which leads to compact
mathematical expressions of the total energy and
the Kohn±Sham equations in momentum space [5].
The local density approximation (LDA)/pseudopoten-

tial/plane-wave approach has become the principal
technique in situations of low symmetry, such as surfaces
and interfaces, in which a geometry optimization has
to include many independent degrees of freedom [6].
The simultaneous optimization of electronic structure
and geometry is widely used in the context of the
Car±Parrinello scheme, which additionally allows one
to combine an electronic structure calculation with
classical molecular dynamics for the ion cores [7].

More recently Car±Parrinello calculations have been
applied to condensed matter problems which tradition-
ally have been outside the scope of solid-state physics,
such as molecules in solution, molecular crystals and
polymers [8±14]. A polymer crystal consists of polymer
chains which have covalent bonding along the polymer
chain; between polymer chains there is only van der
Waals bonding. Conjugated polymers have received
growing interest in recent years because of their in-
triguing optical and electronic properties, which has lead
to novel electronic and electrooptical semiconductor
devices �15�. We have used the LDA/pseudopotential/
plane-wave technique to calculate and analyze the elec-
tronic structure of conjugated polymers [12, 16, 17].
With the help of such calculations promising structures
for low-band-gap materials could be identi®ed and
practical design rules could be extracted [18±20]. More
complex polymers are being considered at present for
applications and these place stronger demands upon the
computational e�ciency of the techniques used to study
their electronic structure.

This article is concerned with pseudopotential/plane-
wave calculations on conjugated polymers and, in par-
ticular, with matters of computational e�ciency. One of
the standard problems associated with plane-wave basis
sets is that convergence as a function of the basis set size
can be notoriously slow, especially for ®rst-row elements
and 3d transition metals. The rate of convergence is inti-
mately related to the smoothness of the pseudopotentials
used. In Ref. [18] convergence was addressed for
pseudopotentials ®tted to an analytical form (and
tabulated) by Bachelet, Hamann and SchluÈ ter (BHS) for
polyaminosquaraine [21]. Here the more ¯exible
numerical pseudopotentials de®ned by Troullier and
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Martins (TM) [22] are examined. Conjugated polymers
which consist of heterocyclic aromatic rings are the sim-
plest conjugated polymers that are of technological rele-
vance; examples are shown in Fig. 1. Polythiophene (PTh)
[16] is the primary test case. Nitrogen and oxygen are the
®rst-row elements which are most di�cult to handle with
a plane-wave basis set [22]. Polyoxadiazole (POD) [17] is,
therefore, the second test case. In systems which have
translational symmetry, such as an ideal polymer chain,
quantities such as the total energy are expressed as an
integral over the ®rst Brillouin zone (BZ) [23]. The accu-
racy of the numerical integration then determines the
accuracy of those quantities. For semiconductors, usually
a surprisingly small number of sampling points su�ces for
the numerical integration [24]. This is also the case for
conjugated polymers, as will be illustrated for PTh and
POD.

Most calculations use the ``standard'' local density
functional which is based upon the numerical results of
Ceperley and Alder [25, 26]. In recent years we have seen
increased e�ort in constructing density functionals
which, besides the local electron density, also depend on
the gradient of the density [27]. Such generalized gradi-
ent approximations (GGA) foremost improve the cal-
culated cohesive energies of molecules and solid state,
which are too large when using the LDA. They have
a smaller, though not necessarily positive, e�ect on
structural energies, lattice constants and ionization
potentials. Bulk moduli, vibration frequencies and in-
termolecular interactions even seem to become worse
when using GGA [14, 28, 29]. The e�ects of gradient
corrections on properties of conjugated polymers are
tested using the Perdew±Wang functional (PW91) [30].

Section 2 brie¯y summarizes the theory that is used in
the following sections, where the computational results
are discussed. In the ®nal section, the conclusions are
summarized.

2 Theory

A basis set includes all plane waves exp�iGj � r�;
j � 1; . . . ;N with a wave vector of size jGjj smaller than
a cuto� value, usually presented in terms of a kinetic
energy cuto�, Ecut.

22jGjj2
2me

� Ecut ; �1�

where me is the electron mass. One uses periodic
boundary conditions in all three spatial directions; the
wave vectors, Gj, satisfying Eq. (1) have to be commen-
surate with the periods. Equation (1) ensures uniform
isotropic sampling of real space with a sampling density

set by Ecut. The completeness of the basis set (and the
real space sampling density) can be systematically
improved by enlarging Ecut. One can mimic a single,
isolated polymer chain by a unit cell which is su�ciently
large in the directions perpendicular to the polymer
chain such that the interaction between the periodic
images is negligible. For a periodic system, convergence
of the total energy is also controlled by the numerical
accuracy of the BZ integration. For isolators/semicon-
ductors the integrand can be expanded in a rapidly
converging Fourier series, which implies that the inte-
gration can be performed using only a small number of
sampling points in the BZ [24]. Convergence with respect
to the BZ sampling density and convergence with respect
to the plane-wave basis set size are usually independent
[6, 18]. The minimum plane-wave basis set required to
obtain meaningful results depends upon the particular
pseudopotentials used. This can be understood by
noting that the potential sets the typical length scale
over which the valence wavefunctions vary strongly.
This length scale needs to be sampled with su�cient
density, which requires a su�ciently large Ecut.

Construction of an atomic pseudopotential starts
by augmenting the rapidly varying all-electron valence
functions, wn;l�r�, n � l� 1, for each l � 1; lmax by a
smooth monotonic function, /l�r�, inside a core radius,
rc;l. The augmentation is done in a continuously di�er-
entiable way and, by construction, the functions wl�1;l�r�
and /l�r� are identical for r � rc;l. The pseudopotential
terms, Vl�r�, are constructed by requiring that /l�r� are
solutions of radial Kohn±Sham equations with Vl�r�
as potentials at the original all-electron eigenvalues
�n;l; n � l� 1 �4�. The augmentation procedure leaves
considerable freedom for de®ning /l�r� and thus Vl�r�.
As an example, Fig. 2 shows Vl�r� and the corresponding

Fig. 1. Schematic structure of the polymers used as test cases for
the calculations: polythiophene 1 and polyoxadiazole (POD) 2

Fig. 2. Potential terms, Vl�r�, (bottom) and atomic pseudowave-
functions, /l�r�, (top) of the Bachelet±Hamann±SchluÈ ter (BHS)
potential for carbon; s, p and d denote l=0,1,2 terms. All terms
coincide with 4/r at large r. The core radii, rc;l, inside which the
pseudowavefunctions deviate from the all-electron wavefunctions,
are indicated by the vertical lines
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/l�r� for carbon as given by BHS.1 Vl�r� have the same
Z=r dependence at large r for all l (Z is the valence
charge); they di�er inside the region r � rc;l, the so-
called core region. The full pseudopotential is

V �r0; r� �
X1;l

l;m�0;ÿl

Y �l;m�̂r0�Vl�r�d�r0 ÿ r�Yl;m�̂r� ; �2�

where each Y �l;m�r̂0�Yl;m�r̂� term projects out one �l;m�
component of the wave function on which the corre-
sponding Vl�r� operates. Making the approximation
Vl�r� � Vlmax

�r� for l > lmax; where lmax denotes the
lowest unoccupied subshell (e.g. lmax = 2 for carbon),
one obtains

V �r0; r� � Vlmax
�r�d�r0 ÿ r�

�
Xlmaxÿ1;l

l;m�0;ÿl

Y �l;m�br0�DVl�r�d�r0 ÿ r�Yl;m�r̂� ; �3�

where DVl�r� � Vl�r� ÿ Vlmax
�r�.2 The second term on the

right-hand side of Eq. (3) is a nonlocal and nonseparable
potential, which makes it computationally demanding. It
is more e�cient to approximate it by a completely
separable nonlocal (Hermitian) potential of the form
Vnl �

P
i aijbA/iih/i

bAj, with j/ii � /l�r�Yl;m�r̂� an atomic
wave function. According to Kleinman and Bylander
[31] the constants ai and the operator bA can be ®xed by
demanding that the potential of Eq. (3), with the last
term replaced by Vnl operating on an atomic pseudo
wavefunction j/ii, yields a result identical to that of
the original potential. This gives ai � 1=h/ijbAj/ii andbA � DVl�r� and the ®nal expression is

V �r0; r� � Vlmax
�r�d�r0 ÿ r�

�
Xlmaxÿ1;l

l;m�0;ÿl

Y �l;m�br0�/�l �r0�DVl�r0�DVl�r�/l�r�Yl;m�̂r�R1
0 j/l�r00�j2DVl�r00�r002dr00

:

�4�
The last term on the right-hand side of Eq. (4) represents
the nonlocal correction applied to components of the
wave function with l � 1, lmax ÿ 1; the ®rst term is a
local potential applied to all l components. The nonlocal
potential terms have a ®nite range, since all Vl�r� terms
have the same Z=r dependence at large r and thus
DVl�r� ÿ! 0 at large r, cf. Fig. 2. For ®rst- and second-
row elements we use lmax � 2, which means that the
nonlocal part of the potential operates on the s and
p parts of the wavefunctions.

3 Convergence results

In the ®rst part of this section pseudopotential/plane-
wave calculations are discussed based upon BHS

pseudopotentials [21] and the LDA for exchange and
correlation [25, 26]. More e�cient pseudopotentials are
introduced in Sect. 3.1. The e�ects of gradient correc-
tions are considered in Sect. 3.2 using the (PW91)
functional [30]. The primary test case is PTh. For carbon
and sulphur BHS pseudopotentials are used; for hydro-
gen a purely local potential consisting of the s part of the
BHS potential is used in all calculations. The unit cell
has dimensions 7.833 AÊ along the PTh chain, which is
the optimized lattice parameter, and 8 AÊ in the direc-
tions perpendicular to the polymer chain, which is
su�cient to decouple the periodic images of the chain.
With this unit cell Ecut � 30 hartrees corresponds to
about 13� 103 plane waves.

A su�cient criterion for convergence with respect to
the size of the plane-wave basis set is the total energy as
a function of Ecut; however, many relevant physical
properties converge faster as a function of Ecut than the
total energy, so the total energy is too strict a criterion.
The cohesive energy, for instance, converges much faster
than the total energy [6]. In the case of conjugated
polymers, geometries and electronic structures are the
most relevant physical properties, so these are used as
convergence criteria. Optimized CAC bond lengths and
the LDA band gap of PTh are shown in Fig. 3 as a
function of Ecut. Using Ecut � 30 hartrees, the CAC
bond lengths are converged within 0.005 AÊ and the LDA
band gap within 0.01 eV. The CAS bond length is con-
verged within 0.003 AÊ at Ecut � 20 hartrees and the
CAH bond length is particularly insensitive to the cuto�
energy, so CAC bond lengths are the most critical pa-
rameters for the geometry here. Experiments usually
yield larger errors for these quantities, implying that it
does not make much sense to converge the calculations
even further (actually even a smaller cuto� of 20 hartrees
is acceptable in some cases). The BHS potential does
not give a very uniform monotonic convergence as can
be observed in Fig. 3; I will come back to this later.

Fig. 3. Optimized CAC bond lengths (circles, solid lines) and local
density approximation (LDA) band gap (triangles, dashed line) as
function of basis set size. The points are calculated values; the lines
are guides for the eye. The lower three curves correspond to (from
top to bottom) the C20AC2; C3AC4 and C2AC3 bond lengths
respectively, cf. Fig. 1

1The BHS potential is expressed as Vl�r� � V BHS
loc �r� � V BHS

l �r�,
where the two terms on the right-hand side are tabulated, cf. Ref.
[21]
2 The unbound wavefunctions for high-l components show very
little structure and Vl�r� near the nucleus is dominated by the
centrifugal kinetic energy, l�l� 1�=2mer2

118



As discussed in the previous section, the density of
sampling points for BZ integration is the second
important parameter for convergence. The CAC bond
lengths and the LDA band gap are shown in Fig. 4 as a
function of the number of BZ sampling points (k points).
Since (by construction) the dispersion of the electronic
bands perpendicular to the polymer chain is negligible,
all sampling points can be placed along the polymer
chain direction. In the following ``n k points'' refers to a
one-dimensional equidistant grid of n points, centered at
k � 0. Since convergence with respect to k-point sam-
pling is independent of convergence with respect to
cuto�, Ecut � 20 hartrees was used to obtain the results
given in Fig. 4. Using three k points, the CAC bond
lengths are converged within 0.003 AÊ and the gap within
0.05 eV; using two sampling points, the corresponding
values are 0.01 AÊ and 0.1 eV, which in most cases is
su�ciently accurate. As discussed in the previous sec-
tion, such fast convergence as a function of the number
of k points is typical for isolating and semiconducting
materials. Comparing Figs. 3 and 4, we observe that the
electronic band gap is relatively insensitive to Ecut, but is
more sensitive to the number of k points. This di�erence
is related to the interplay between the geometry and the
band gap. More speci®cally the alternation between
shorter and longer CAC bonds is closely connected to
the size of the band gap; the larger the di�erence
between short and long bonds, the larger the band gap
[16]. Increasing the number of sampling points decreases
this di�erence and thus decreases the band gap.
Enlarging the cuto� only leads to a more or less uniform
contraction of all bonds, which has a much smaller e�ect
on the band gap.

According to the discussion in the previous section
the rate of convergence with respect to Ecut is intimately
connected to the pseudopotential. It is clear that the way
in which the Vl�r� terms are constructed in the core
region �r < rc;l� implicitly assumes that the core region is
not important in describing the bonding properties of
the atom. Naturally this can only be true if the core radii
are chosen to be su�ciently small. Small core radii,

however, result in hard pseudopotentials, i.e. potentials
which vary strongly over a small (core) region. One
needs plane waves with large wave vectors to expand the
rapidly varying wavefunctions in such a core region; in
other words one needs a large Ecut. The BHS potential
for the p electrons of C, i.e. Vl�1�r� in Fig. 2, is an
example of a hard pseudopotential. The relatively slow
convergence of the results shown in Fig. 3 re¯ects the
hardness of (especially the p part of) this potential.
However, within the constraints set by the scheme for
constructing pseudopotentials (see the previous section)
there remains considerable freedom to construct much
smoother pseudopotentials.

3.1 TM pseudopotentials

An algorithm for generating smooth pseudopotentials
has been presented by Troullier and Martins [22]. I will
use this algorithm to generate pseudopotentials based
upon di�erent values for the core radii and discuss
convergence as a function of those core radii. Figure 5
shows two sets of Vl�r� of TM potentials for carbon,
the ®rst set with rc;l � 0:56; 0:59; 0:59 for l � 0; 1; 2,
respectively (TM1) and the second set with rc;l �
0:79; 0:81; 0:79 AÊ (TM2). In the ®rst set the core radii
are positioned just inside the outer maxima of the atomic
pseudowavefunctions, as shown in Fig. 5 (dashed lines).
In the second set the core radii are positioned just
outside these maxima (solid lines). The CAC bond
lengths in PTh are around 1.4 AÊ , which means that for
the TM1 potential the core radii do not overlap, whereas
the TM2 potential leads to an overlap of atomic core
regions of about 0.2 AÊ . The latter seems to be in con¯ict
with the demand that the core regions should not
interfere with bonding properties, which is questionable

Fig. 4. As Fig. 3, but now as a function of the number of k-points
used to sample the Brillouin zone

Fig. 5. Vl�r� (bottom) and /l�r� (top) of Troullier±Martins (TM)
potentials for carbon (cf. Fig. 2). The dashed lines refer to a
potential generated with core radii near 0.6 AÊ ; the solid lines refer
to a potential generated with core radii near 0.8 AÊ
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if these regions overlap. We will consider this in more
detail below. Note for a start in Fig. 5 that the TM2

potential leads to pseudowavefunctions that are almost
indistinguishable up to about 0.2 AÊ inside its core radii
from the wavefunctions generated with the TM1 poten-
tial. This indicates that a small overlap of core regions
can be tolerated. The e�ect of the core radii on the Vl�r�
terms is much more dramatic. The Vl�r� coming from
the larger core radii (TM2) are much shallower and
smoother than the ones coming from the smaller core
radii (TM1).

The convergence of CAC bond lengths and the LDA
band gap as a function of Ecut for both the TM1 and
TM2 potentials is shown in Fig. 6. The TM potential
used for sulfur has rc;l � 0:94 AÊ for l � 0; 1; 2; the CAS
bond length is converged within 0.002 AÊ for Ecut � 20
hartrees, irrespective of the pseudopotential used for
carbon, so again the CAC bond lengths are the more
critical parameters. Comparing the results of Fig. 6 to
the ones obtained with the BHS potential (Fig. 3), it is
immediately observed that convergence is much more
uniform for TM potentials. The overall convergence for
the TM1 potential (smaller core radii, dashed lines in
Fig. 6) is comparable to the convergence obtained with
the BHS potential: for Ecut � 30 hartrees the CAC bond
lengths are converged within 0.001 AÊ and the LDA band
gap within 0.007 eV. Using the TM2 potential, the
convergence as a function of cuto� energy is faster: with
Ecut � 20 hartrees the CAC bond lengths are converged
within 0.003 AÊ and the LDA band gap within 0.005 eV.
This agrees with the notion that smoother potentials
lead to faster convergence as a function of Ecut. Both the
TM1 and TM2 potentials give similar converged results:

their CAC bond lengths are within 0.002 AÊ and the
LDA band gap is within 0.003 eV. This con®rms the
suggestion that the small overlap of atomic core regions
which occurs in the TM2 potential can be tolerated, since
it does not a�ect the bonding in PTh. Since the smooth
TM2 potential leads to convergence at a much lower

cuto� energy, it is to be preferred over the TM1 and
BHS potentials.

Enlarging the core radii gives even smoother poten-
tials and thus faster convergence, but obviously this can
lead to unphysical results. This is illustrated in Fig. 7,
where converged CAC bond lengths and the LDA band
gap are shown as a function of rc;l. For rc;l > 0:8 AÊ , the
CAC bond lengths become unphysically small and also
the LDA band gap starts to deteriorate. In conclusion,
the core radii used for the TM2 potential are optimal,
since they give physically meaningful results at a mod-
erately low cuto� energy. The small overlap of core re-
gions of the TM2 potential which occurs in the CAC
bonding can be tolerated. This is related to the fact that
whereas the construction of the TM pseudopotential
only demands that pseudowavefunctions and all-
electron atomic wavefunctions coincide for r > rc;l,
the smooth matching at r � rc;l in fact leads to a good
coincidence also for slightly smaller r values [22]
(cf. Fig. 5).

Although the discussion in the previous paragraph
was centered around the TM potential for carbon, the
conclusions are fairly general. This is illustrated by
Fig. 8, where CAC, NAN, CAO and CAN bond lengths
(in decreasing order) and the LDA band gap as a
function of Ecut are shown for POD using BHS or TM
potentials. The core radii used for the latter are
rc;l � 0:76 AÊ , l � 0; 1; 2 for nitrogen and rc;l � 0:73 AÊ

for oxygen. Bond lengths are converged within 0.001 AÊ

and the LDA band gap within 0.01 eV using a cuto�
energy of 30 hartrees. As before, reducing the core radii
leads to the same converged values for the bond lengths
(on a scale of 0.001 AÊ ) and the LDA band gap (on a
scale of 0.01 eV), but a higher cuto� energy is required
in order to achieve convergence. Compared to the TM
potentials, BHS potentials again give less uniform con-
vergence, which is most clearly observed for the LDA
band gap (the dashed line at the top of Fig. 8). Using
Ecut � 30 hartrees with BHS potentials, the bond lengths
are converged within 0.02 AÊ and the LDA band gap is
converged within 0.1 eV. For some applications these

Fig. 6. As Fig. 3, but using the TM potentials as shown in Fig. 5.
The dotted lines refer to results obtained using the potential
generated with core radii near 0.6 AÊ ; the solid lines refer to the
potential generated with core radii near 0.8 AÊ

Fig. 7. Dependence of CAC bond lengths and LDA band gap on
the core radii used to generate the TM pseudopotential
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convergence errors can be tolerated, but it will be clear
that in general TM potentials are to be preferred.

3.2 Density functionals

In recent years, gradient corrected functionals of in-
creased accuracy have become widely available [27, 30].
Replacing the standard LDA functional, these so-called
GGA functionals foremost improve on the cohesive
energies of molecules and crystals, which are severely
overestimated within the LDA. GGA functionals have a
much smaller, and not always positive, e�ect on other
quantities, such as energy di�erences between molecular
structures, lattice constants, vibration frequencies and
ionization potentials [28, 29]. In this section the in¯uence
of a gradient-corrected functional on the structural
properties of conjugated polymers is studied using the
(PW91) functional [30] in calculations on PTh and POD.
Naturally the exchange±correlation potential used in the
atomic calculation in which the pseudopotential is
generated has to be consistent with the exchange±
correlation potential used in the molecular or solid-state
calculation. Figure 9 shows a BHS-type pseudopotential
generated using the GGA functional (PW91) in the
atomic calculation. 3One observes that this pseudopo-
tential is nearly identical to the one generated with the
LDA functional, except for the inner core region; this is

consistent with previous calculations [29]. The e�ect
which the GGA functional has on the optimized
structures of PTh and POD is also quite small.
Comparing the LDA and GGA generated structures,
the bond lengths di�er by less than 0.005 AÊ , bond angles
di�er in the order of 0:1� and the electronic band gap
di�ers by 0.001 and 0.04 eV for PTh and POD,
respectively. These calculations were done with a lattice
constant which was ®xed at the LDA optimized value.
The di�erence between the optimized lattice constant
using the GGA or the LDA functional is illustrated in
Fig. 10 for POD. If the GGA functional is used, the
optimized lattice constant is 6.789 AÊ , whereas for the

Fig. 8. Band gap (top) and bond lengths (bottom) for POD as a
function of basis set size. The circles (solid lines) correspond to
results obtained with TM potentials; the triangles (dashed lines)
correspond to results obtained with BHS potentials. The bond
length curves in the lower ®gure correspond to (from top to bottom)
the C20AC2; CAO; NAN and CAN bonds, respectively

Fig. 9. BHS-type potentials generated using the generalized gradi-
ent approximation (GGA) (solid lines) and the LDA (dashed lines),
respectively

Fig. 10. Total energy, E, (in hartrees/unit cell) as a function of the
lattice parameter, az, (in angstroms) for POD as calculated with the
GGA functional (solid line; left y-axis) and the LDA functional
(dashed line; right y-axis), respectively. Third-order polynomials are
®tted through the point

3M. Fuchs, M. Bockstedte and M. Sche�er. Figure 9 shows BHS-
type potentials with slightly di�erent parameters, incorporating a
nonlinear core correction
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LDA functional it is 6.807 AÊ . The di�erence of less than
0.02 AÊ is negligible for most practical purposes. In
conclusion, the calculated structural and electronic
properties of polymers when using GGA or LDA
functionals are very similar. The curvatures around the
minimum of both curves in Fig. 10 di�er by about 1%.
This could be an indication that the GGA- or the LDA-
generated bulk moduli and vibrational frequencies are
also similar. Proof of this statement would, however,
require a further detailed study.

Conclusions

Density functional calculations using pseudopotentials
and a plane-wave basis set were applied to study the
properties of conjugated polymers. A uniform conver-
gence of geometry and electronic structure can be
achieved using the ¯exible TM pseudopotentials. A
small overlap of about 0.2 AÊ of atomic core regions
can be tolerated when describing the chemical bonding,
which means that converged results can be obtained for
all ®rst-row elements using Ecut�30 hartrees; bond
lengths are converged on a scale of 10ÿ3AÊ and band
gaps on a scale of 10ÿ2eV. For carbon and second-row
elements Ecut�20 hartrees is su�cient to converge the
results. Decreasing the atomic core regions requires a
higher cuto� energy in order to get converged results.
Increasing the core regions yields unphysical results for
geometries and electronic structures. Convergence with
respect to the number of sampling points used in the BZ
integration is very fast. Three sampling points placed in
the direction along the polymer backbone ensures
convergence (for bond lengths within 5� 10ÿ3AÊ and
for the band gap within 5� 10ÿ2 eV), even two is
su�cient for many purposes (bond lengths 10ÿ2AÊ , band
gap 10ÿ1 eV). On this scale the di�erences between the
calculated structural and electronic properties of poly-
mers when using GGA or LDA functionals are very
small.
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